
1

Design and Implementation of the Agent-based EVMs System

By

Hui-Min Chen
June 30, 2000

This report describes the design and implementation of the agent-based EVMs system. A
prototype is available at www.sims.berkeley.edu/research/metadata/demo.html.

1.0 Intelligent Agents

Since 1990, intelligent agents have been broadly used in complex, dynamic, and open
applications such as production planning, robotics, and in searching the Internet. Though
theoretical research as well as real implementation of agent technology are common,
there is no commonly agreed-upon definition of intelligent agents. From an Artificial
Intelligence point of view, an intelligent agent is a hardware or (more usually) software-
based computer system that has the following properties: (Wooldridge & Jennings 1995)

• Autonomy: agents work on their own without direct interventions of humans or
others.

• Social ability: agents interact with each other using an agent communication
language (ACL, e.g., Telescript, Safe-Tcl, KQML, etc.).

• Reactivity: agents perceive their environment and respond in a timely manner.
• Pro-activeness: agents are goal-oriented.

Besides, Franklin & Grasser (1996) suggested that an intelligent agent should be
temporally continuous, i.e., a continuously running process, and may have a learning
ability and mobility, i.e., transporting itself from one machine to another. Haverkamp &
Gauch (1998) suggested that an intelligent agent is benevolent (not a Trojan horse) and
behaves in a rational manner. For other definitions of intelligent agents, see Franklin &
Grasser (1996) for detail.

In an agent-based system, there is a single agent such as an interface agent or multiple
agents. Generally speaking, a multi-agent-based system has one of the following three
types of architecture (Genesereth & Ketchpel, 1994): a contract-net system, a
specification-sharing system, or a federated system. In a contract-net system, agents in
need of service broadcast requests for proposals to other agents. Upon receiving requests,
agents offer bids to the originating agents based on their capabilities. The originating
agents then decide which agents to deal with for contracting. The communication cost of
a contract-net system is)(2NO , where N is the number of agents. In a specification-
sharing system, agents supply other agents with information about their capabilities and
needs, and, therefore, agents can coordinate their activities based on a mutual
understanding. The communication cost of a specification-sharing system is

2

between)(NO and)(2NO . Both a contract-net system and a specification-sharing system
utilize a direct communication approach.

In contrast, a federated system has a hierarchical structure in which a coordinator or a
facilitator supervises local agents in a federation (Geneserth & Fikes, 1992). The
federated agents do not communicate with each other directly. Instead, they communicate
only with the coordinator to request a service from agents in other federations. The
coordinators know each local agent very well; therefore, they broadcast the needs of their
local agents and pass only relevant service requests from other coordinators to their local
agents. One benefit of such an indirect communication approach is that communication
cost can be reduced to a minimum. That is,)(2MO , M << N , where M is the number
of federations.

An agent-based system could be very complex and thus expensive. What kind of problem
justifies the use of agent technologies rather than other software techniques such as
object-oriented programming or pure artificial intelligence application? Muller (1998)
provided guidelines in answering this question. He suggested that agent technologies are
appropriate for application problems having the following properties:

1. Highly dynamic, necessary to be responsive and adaptable to a changing
environment.

2. Need to deal with failure, e.g., rescheduling, re-planning, and reallocating of
resources.

3. Need to balance long-term, goal-directed, and short-term, reactive behavior.
4. Complex and/or safety-critical guaranteed reactions and response time.
5. Geographically or logically distributed resources.
6. Need for reliability, robustness, and maintainability.
7. Complex or decentralized resource allocation problems with incomplete

information.
8. Flexible interaction with human users.

According to Muller’s guidelines, it is quite evident that agent technologies are suitable
for the EVMs system for the following reasons:

1. The EVMs system intends to provide a search aid for users to deal with
unfamiliar databases on the Internet. The Internet is geographically distributed
and is known for its highly dynamic nature.

2. The metadata vocabulary of an unfamiliar database may be very complex and
change over time. Therefore, a system that can respond to and adapt to a
changing environment is desirable.

3. Remote, unfamiliar databases may be unavailable temporarily due to remote
server down or network problems and so the EVMs system should have an
ability of rescheduling or re-planning its tasks.

4. The entry vocabulary module building process should be reliable and robust.
Also a decomposition of such a complex task is preferable to facilitate the whole
process.

3

5. Most importantly, the entry vocabulary module building process should be
transparent to users. An advanced EVMs system will interact flexibly with users
in the front-end, collect their queries, detect their preferences or domains of
interest, and create entry vocabulary modules behind the scene.

2.0 Related Work

The application of intelligent agents to the design of information retrieval systems has
drawn some attention in recent years and their benefits have been demonstrated in several
publications. For example, SAIRE (A Scalable Agent-Based Information Retrieval
Engine) developed by Odubiyi et al. (1997) is a multi-agent search engine that uses agent
technology, natural language understanding, and conceptual search techniques to support
public access to Earth and Space Science Data over the Internet. SAIRE provides a Web-
based, integrated user interface to distributed data sources maintained by NASA and
NOAA. Agents in SAIRE form seven federations, in which an agent manager controls
several local agents. However, agent managers do not intercommunicate with each other
directly but rather via a central coordinator agent (master agent). This hierarchical design
is risky because the whole system is down if the central coordinator fails. Moreover, a
natural language parser extracts a frame containing actions and concepts embedded in the
user’s natural language input. Two dictionaries, a main dictionary and a personal
dictionary, are used to specify a user’s domain of interest. The main dictionary contains
words with semantic meaning related to SAIRE’s specific domains, while the personal
dictionary contains words that might have multiple meanings in the domain, as well as
new words defined by users. Thus, SAIRE can learn new words through interacting with
users to define unknown words as well as to clarify words with multiple meanings.

Amalthaea (Moukas & Zacharia 1997) is a multi-agent ecosystem for personalized
filtering, discovery and monitoring of information sites. Its main goal is to assist the users
in finding interesting information on the Web. There are two kinds of agents in
Amalthaea: filtering agents that model and monitor the interests of the user and discovery
agents that model the information sources. Both the user’s interest and retrieved
documents from Web sites are represented by weighted keyword vectors. The
information agents pick one document from the downloaded set passed by the discovery
agents and calculate how a confidence level is that specific document will satisfy the
user’s needs. The confidence measure is not different from the typical normalized
similarity measure (cosine) used in the vector space model in information retrieval. A
particular feature of Amalthaea is that it provides a market-like ecosystem in which
agents evolve, collaborate and compete to survive. Agents that are valuable (useful) to
the user and to other agents are allowed to reproduce while low-performing agents are
destroyed to save system resources. Though its multi-agent architecture was not explicitly
specified, Amalthaea appeared to be a kind of specification sharing systems.

4

3.0 Architecture of the EVMs System

Running on a UNIX platform, the EVMs system is implemented in the conventional
TCP/IP client-server environment. When a user makes a connection to the EVMs Web
site at www.sims.berkeley.edu/research/metadata/, the Web server initiates a session
(channel) between the user and the EVMs system via a Common Gateway Interface
(CGI). The external architecture of the EVMs system is shown in Figure 1.

To reduce communication cost as well as system workload, the EVMs system utilizes a
federated system (see Figure 2) consisting of multiple interacting agents of eight types
which “divide and conquer” the entry vocabulary module building tasks. They range
from data retrieval agents (type 4 in Figure 2) that download records from remote
databases through cleaner agents (type 5 in Figure 2), extractor agents (type 6 in Figure
2), and builder agents (type 7 in Figure 2) that create a dictionary of associations using
downloaded records. Desktop agents (type 1 in Figure 2) and domain agents (type 2 in
Figure 2) help the user define the domain of interest and deploy the created association
dictionaries. Planner/scheduler agents (type 3 in Figure 2) schedule and reschedule record
downloading tasks in a near-optimal way. The agents (facilitators) communicate with
each other using the KQML (Knowledge Query and Manipulation Language, see
www.cs.umbc.edu/kqml for details)-like agent communication language (ACL), which
consists of tagged messages. For example, an ACL message sent from the desktop agent
to the planner/scheduler agent to request an estimation of the record downloading time is
as follows:

 <message>
<msg id>service_type_3</msg id>
<usr id>20000620_2_11:32:56</usr id>
<sender>desktop</sender>
<receiver>planner</receiver>
<database>inspec</database>
<domain>information_systems</domain>

 <service requested>estimate</service requested>
<reply constraint>urgent</reply constraint>

 </message>

5

Web Browser

Internet

EVM Web Server

Repository of
association
dictionaries

Unfamiliar Database

Records

9. Desktop agents add
association dictionaries to
desktop as a searching aid.

1. Desktop
agents help the
user define his/
her domain of
interest.

2. Desktop agents
pass users' query or
choice of subject
category to domain
agents

3. Domain agents help the user find his or her domain
of interest. Either an already exisiting association
dictionay is passed to the desktop agent or a ranked
list of journal titles is prepared by the domain agent at
this stage.

5. Data retrieval agents download records
from unfamiliar databases as training sets

7. Extractor agents extract A-terms
(nouns or noun-phrases) from
 titles and abstracts of records in the
training set.

8. Builder agents create an association
dictionary by associating each A-term
with each controlled vocabularies' term (B-
term) assigned to the same record used to
derive the A-term.

Figure 1. Architecture of a Multi-Agent-Based Search
Support for Unfamiliar Databases (EVMs)

6. Cleaner agents pre-process
downloaded records to
maintain a "good set" of
training data.

4 . P lanner /Opt imize r
a g e n t s s c h e d u l e d a t a
retrieval tasks

FDDI Ring

Internet

EVM Web Server

Figure 2. Internal Archiecture of the EVMs system

Unfamiliar DatabasesUnfamiliar Databases

1

2

3

7

5

6

4

Desktop agents

Domain agents

Planner/Optimizer agents

Data retrieval agents

Cleaner agents

Extractor agentsBuilder agents

coordinator

coordinator

T3

Bandwidth B1 Bandwidth B2

6

Whenever a session is initiated, a federation is formed and identified by a unique ID
composed of the session initiation time and the user’s personal identification number
(will be introduced in the following section). Similarly, a federation is collapsed when the
corresponding session ends.

The EVMs agents are introduced below in the order in which they come into play during
a session.

3.1 Desktop Agents

The desktop agent provides a graphical interface that links the user with other agents. It is
the only type of agent that resides on the client computer to communicate with the user
directly. The major tasks of the desktop agent are to:

1. Authenticate the user’s identity. Each new user is invited to create a personal
profile consisting of the user’s email address as well as a unique alphanumeric
personal identification number (PIN) up to six characters. For every returned user,
a valid PIN is required to retrieve the archive of existing entry vocabulary
modules or create a new entry vocabulary module. The PIN helps to recover the
user’s activities from transaction logs for deriving user preference.

2. Examine the validity of the user’s input.
3. Provide online help to the user.
4. Work with the domain agent to help the user define a domain (subject) of interest.
5. Acquire the status of other agents and display this information on the desktop in a

real-time fashion (see Figure 3).
6. Add the resulting entry vocabulary modules onto the desktop (see Figure 4) to

assist the user searching the database (see Figure 5). Some of these databases are
restricted by licensing conditions and accessible only to users with a Berkeley IP
address.

7. Detect the termination of a session due to user inactivity.

Figure 3. Check agent status “on-the-fly”.

7

Figure 4. Add dictionaries to the desktop.

Figure 5. Search the dictionary for INSPEC Thesaurus terms.

3.2 Domain Agents

The task of the domain agent is to define the user’s domain of interest. This is
implemented by the preparation of a ranked list of journal titles from the Sciences
Citation Index (SCI) Journal Citation Report that reflect the user’s domain of interest.
Ordinarily, the metadata vocabulary should be studied as a whole. However, in practice,
users are rarely equally interested in all of the contents of the whole database at any one
time. Instead, they are usually interested in some specific domain reflecting their

8

particular interest in a search. Thus, it will be more efficient and cost-effective to
concentrate on entry vocabulary modules of topical domains within the database.

The domain agent will first ask the user to choose a database to search. Then, the user has
to select one of the subject categories for the chosen database (see Figure 6). The domain
agent will search the archive of entry vocabulary modules to see if one (of the same
subject category for the same database) already exists. If yes, the domain agent just
passes it to the desktop agent directly. Otherwise, a ranked list of journal titles is prepared
as queries by the domain agent and passed to the data retrieval agent to retrieve records
from the chosen database. Meanwhile, the desktop agent passes a request for creating an
entry vocabulary module to the planner/scheduler agent as well.

Figure 6. Choose a domain of interest.

3.3 Planner/Scheduler Agents

In general, data retrieval (downloading) might be extremely time-consuming and thus,
becomes a bottleneck. Therefore, the primary purpose of the planner/scheduler agent is to
schedule the data retrieval tasks so that the EVMs system is guaranteed to work smoothly
and efficiently. The planner/scheduler agent adopts a heuristic rule (called LCT or least
completion time) to generate a near-optimal schedule for the tasks. The principle of the
LCT rule is that the task having the shortest expected completion time is to be processed
first during peak hours. A peak hour is defined as the time at which the number of tasks is
more than a threshold value Z, which is defined as the largest integer less than C/2B,
where C is the number of communication channels provided by the cable line connecting
the EVMs system to the Internet and B is the average number of communication channels
consumed by a data retrieval task. For a T3 line (currently used by the University of
California, Berkeley), there are 672 separate communication channels, each channel with
a data transmission rate of 64,000 bits per second (Thomas, 1996). If the average data

9

transmission rate is 300,000 bits per second, then B = 5 (300,000/64,000) and therefore,
Z = 67 (672/10). During regular hours, the tasks are served on a first-come, first-served
basis.

To estimate the completion time (including downloading time and processing time) of a
task, the planner/scheduler agent employs a multiple regression model as follow:

NRT 210 βββ ++= (1)

where T is the expected completion time of a task, R is the number of records (articles)
to be downloaded, and N is the number of tasks being processed. This is because records
are downloaded and processed in sequence; therefore, the completion time is positively
associated with the number of records. To reflect changes in the size (bytes) of records
and data transmission rates associated with remote databases, the regression parameters
are updated every week using the most recent two weeks’ historical data. As of the time
when this paper was written, 0β = -600.45, 1β = 0.16, 2β = 274.53, R-square = 0.89

(proportion of variances in T that are accounted for by R and N), and the average
completion time of a task is 25 to 59 minutes, depending on the size of records.

Once the schedule for a task is determined, the planner/scheduler agent will notify the
user by email about the expected completion time of his or her request. If a downloading
or processing task is interrupted due to network down or system malfunction, the
planner/scheduler agent will reschedule the task, update the expected completion time by
rerunning (1), and notify the user about this change.

3.4 Data Retrieval Agents

Data retrieval agents are designed to download records from the unfamiliar database.
Those records serve as the training set to create an entry vocabulary module. Records
used to build entry vocabulary modules are typically acquired by downloading sets of
MELVYL ® records retrieved by a query consisting of the ranked list of journal titles
prepared by domain agents (An exception to this approach is the U.S. patents records that
are retrieved from the U.S. patent database online.). MELVYL ® is an online catalog of
the University of California and provides a uniform interface to a variety of databases
such as INSPEC, BIOSIS, SIC, and MEDLINE (www.melvyl.ucop.edu).

3.5 Cleaner Agents

The multiplicity of formatting, even with SGML formatting of text, implies a difficult
and demanding job of standardizing formats to be understood and prepared for processing
by other agents. The records in the downloaded set must be transformed or filtered by the
cleaner agent before the entry vocabulary module can be constructed.

10

3.6 Extractor Agents

For each record in the training set, the extractor agent extracts terms (nouns or noun-
phrases) in the title and abstract using natural language processing modules. These
natural language terms are called A-terms. Then each A-term is paired with the metadata
terms, called B-terms, assigned to that record. The extractor agent ends with a list of A-
term and B-term pairs for each record in the training set.

The natural language processing modules consist of two publicly available applications:
the Apple Pie Parser (Version 5.9) and the Brill Tagger. They are mainly employed to
identify short noun phrases in a sentence. This is because noun phrases are more likely
than single words to be used to represent complex concepts. The Apple Pie Parser is a
bottom-up probabilistic chart parser that looks for the parser tree with the best score using
a best-first algorithm. The Brill Tagger is a transformation-based part of speech tagger
and has been applied to experiments investigating how WordNet can be used with
contextual clues to disambiguate terms (Leacock & Chodorow, 1998). For a detailed
description of the application and evaluation of the Apple Pie Parser and the Brill Tagger,
see Kim & Norgard (1998).

3.7 Builder Agents

The major task of the builder agent is to compute the association between the A-term
(words or noun phrases) and the B-term (metadata terms) in a pair following (2)-(5) to
complete an entry vocabulary module. Once an entry vocabulary module is complete, the
builder agent either forwards it to the desktop agent if the user is still online, or adds it to
an archive and notifies the user by email.

BABBAB

BA
BABBAB

BA
ppCppCf ~|||~|~|||

|~|

||||||||

||0)1(*)1(∩−∩
∩

∩−∩
∩

−−= (2)

|~|||~
2

|~|
2

||

|~|

||||
1

||
1

||

||1)1(*)1(BABBAB

BA
BABBAB

BA
ppCppCf ∩−∩

∩
∩−∩

∩
−−= (3)

λ = 0f / 1f (4)

where |)|~|/(||)~||(| BBBABAp +∩+∩= , i.e., P(A|B) = P(A|~B) = P(A) under the

null hypothesis that term A (a A-term) and term B (a B-term) are independent 1p =

||/|| BBA ∩ and 2p = ||~/|~| BBA∩ are the maximum likelihood estimators
(MLEs) of P(A|B) and P(A|~B) respectively. Moreover, (4) can be transformed into the
following logarithmic format:

 +−∩−+∩=−)1ln(|)||(|ln|[|2ln2 11 pBABpBAλ
−−∩−+∩)1ln(|)~||(|~ln|~| 22 pBABpBA

−−∩−+∩)1ln(|)||(|ln|| pBABpBA

11

)1ln(|)~||(|~ln|~| pBABpBA −∩−+∩] (5)

Now λln2− can be interpreted as the “weight” or “strength” of associations between
term A and term B. For example, the contingency table for term A “copyright” and the
INSPEC Thesaurus term (term B) “legislation” is shown as Table 1. Plugging these
numbers into (5) will obtain the “weight” of associations between “copyright” and
“legislation”, which is 285.25.

Table 1. The contingency table for the A-term “copyright”
and the B-term “legislation” in INSPEC.

B-term Non-B-term Subtotal
A-term 45 268 313
Non-A-term 2524 1043845 1046369
Subtotal 2569 1044113 1046682

4.0 Reference

Franklin, S. & Grasser, A. (1996). Is it an Agent, or just a Program?: A Taxonomy for
Autonomous Agents. In Proceedings of the Third International Workshop on Agent
Theories, Archietctures, and Languages, Springer-Verlag.

Genesereth, M. R. & Fikes, R. E. (1992). An agent-based approach to software
interoperability. In Proceedings of the DARPA Software Technology Conference, 359-
366, Meridian Corporation, Arlington, VA.

Genesereth, M. R. & Ketchpel, S. P. (1994). Software agents. Communication of the
ACM, 37(7), 48-53.

Haverkamp, D. S. & Gauch, S. (1998). Intelligent Information Agents: Review and
Challenges for Distributed Information Sources. Journal of the American Society for
Information Science, 49(4), 304-311.

Kim, Y. & Norgard, B. (1998). Adding natural language processing techniques to the
Entry Vocabulary Module building process. Technical report.
Available :www.sims.berkeley.edu/research/metadata/nlptech.html.

Leacock, C. & Chodorow, M. (1998). Combining local context and Wordnet similarity
for word sense identification. In C. Fellbaum, editor, WordNet: an electronic lexical
database. MIT Press, Cambridge, MA.

Moukas, A. & Zacharia, G. (1997). Evolving A Multi-Agent Information Filtering
Solution in Amalthaea. In Proceedings of the First International Conference on
Autonomous Agents, February 5-8, 394-403.

12

Muller, J. P. (1998). Architectures and applications of intelligent agents: a survey. The
Knowledge Engineering Review, 13(4), 353-380.

Odubiyi, J.B., Kocur, D.J., Weinstein, S.M., Wakim, N, Srivastava, S., Gokey, C., &
Graham, J. (1997). SAIRE- A Scalable Agent-Based Information Retrieval Engine. In
Proceedings of the First International Conference on Autonomous Agents, February 5-8,
292-299.

Thomas, R. M. (1996). An introduction to local area networks. Alameda, CA: SYBEX.

Wooldridge, M & Jennings, N. R. (1995) Agent Theories, Architectures, and Languages:
a Survey. In Wooldridge and Jennings Eds., Intelligent Agents, Berlin:Springer-Verlag.

