Cheshire Il at INEX: Using A Hybrid Logistic Regression
and Boolean Model for XML Retrieval

Ray R. Larson
School of Information Management and Systems
University of California, Berkeley
Berkeley, California, USA, 94720-4600

ray@sherlock.berkeley.edu

ABSTRACT

This paper describes the retrieval approach that Berkeley
used in the INEX evaluation. The primary approach is the
combination of a probabilistic methods using a Logistic re-
gression algorithm for estimation of collection relevance and
element relevance, along with Boolean constraints. The pa-
per also discusses our approach to XML component retrieval
and how component and document retrieval are combined
in the Cheshire II system.

Keywords

Information Retrieval, IR Evaluation, XML Retrieval

1. INTRODUCTION

The Cheshire II system originally was developed to provide a
bridge from conventional online library catalogs to full-text
online resources. Early research (circa 1990) with the sys-
tem concentrated on the application of probabilistic ranked
retrieval to short documents consisting primarily of biblio-
graphic metadata and not the kinds of full-text document
collections encountered today.

Over the past several years we have started to use the sys-
tem to implement production-level services providing access
to full-text SGML and XML document for a number of dig-
ital library systems in the United States and the United
Kingdom, including the UC Berkeley Digital Library Ini-
tiative project sponsored by NSF, NASA and ARPA, The
Archives Hub sponsored by JISC in the UK, The History
Data Service of AHDS in the UK and the Resource Discov-
ery Network in the UK. The Cheshire system is also being
used to provide scalable distributed retrieval for consortia of
institutions providing access to online catalogs and archival
collections (the WARM system and the Distributed Archives
Hub).

This paper will review the characteristics of the Cheshire II
system. It will also examine the approach taken in applying
this system to a collection of large XML documents as part
of the Initiative for the Evaluation of XML retrieval (INEX),
some observations on its performance and behavior in this
area will be presented as well.

2. THECHESHIRE Il SYSTEM

When the Cheshire system was first conceived (in the late
1980’s) the aim was to develop a “next-generation” online

library catalog system that could provide ranked retrieval
based on probabilistic IR methods, while still supporting
Boolean retrieval methods expected in the online catalog
systems of that era. The decision was made early on to
employ SGML as the single format used in the database
(with conversion utilities to generate, for example, SGML
versions of MARC format records).

Since that time the system has been constantly redesigned
and updated to accommodate the information retrieval needs
of a much broader world. The early choice of SGML made
use of XlcgptML a natural growth path, and the system
remains one of the few to accomodate both XML and its
more complex parent, SGML. The Cheshire II system now
finds its primary usage in full text or structured metadata
collections based on SGML and XML, often as the search
engine behind a variety of WWW-based ”search pages” or
as a Z39.50 [13] server for particular applications.

The Cheshire II system includes the following features:

1. It supports SGML or XML as the primary database
format of the underlying search engine, and also pro-
vides support for raw-text data or HTML linked to
SGML /XML metadata records. MARC format records
for traditional online catalog databases are supported
using MARC to SGML conversion software developed
for the project.

2. It is a client/server application where the interfaces
(clients) communicate with the search engine (server)
using the Z39.50 v.3 Information Retrieval Protocol.
The system also provides a general Z39.50 Gateway
which supports mapping of Z39.50 structured queries
to local Cheshire databases and to relational databases.

3. The system include multiple clients, all of which are
scriptable using either Tcl/Tk[10] or the Python lan-
guage. These include a programmable graphical direct
manipulation interface under X windows on Unix and
Linux systems as well as a Windows implementation.
There is also CGI interpreter version that combines
client and server capabilities for low-overhead access to
local collections. All of the interfaces permit searches
of the Cheshire II search engine as well as any other
239.50 compatible search engine on the network.

4. It permits users to enter natural language queries and

these may be combined with Boolean logic for users
who wish to use it.

5. It uses probabilistic ranking methods based on the Lo-
gistic Regression research carried out at Berkeley to
match the user’s initial query with documents and doc-
ument components in the database. In some databases
it can provide two-stage searching where a set of “clas-
sification clusters”[5] for the database is first retrieved
in decreasing order of probable relevance to the user’s
search statement. The clusters can then be used to
provide feedback about the primary topical areas of
the query, and retrieve documents within the topical
area of the selected clusters. This aids the user in
subject focusing and in discriminating between vari-
ant treatments of a topic.

6. It supports distributed search across multiple collec-
tions using features of the Z39.50 protocol to harvest
and create collection representatives that can then be
searched probabilistically to select the collections most
likely to contain relevant documents.

7. It supports relevance feedback searching where a user’s
selection of relevant documents is used to expand upon
the initial query and automatically construct a new
query derived from the contents of the selected docu-
ments.

8. It allows parts or “components” of complete SGML
or XML documents (e.g., paragraphs) to be defined,
indexed and retrieved as if they were individual doc-
uments, with separate indexes and ranking statistics
used during retrieval.

9. It provides flexible document retrieval, including the
ability to request any individual XPATH specification
from any document selected during searching.

The Cheshire IT search engine supports both probabilistic
and Boolean searching. The design rationale and features of
the Cheshire IT search engine have been discussed elsewhere
[9, 8] and will only be briefly repeated here with an emphasis
on those features that were applied in the INEX evaluation.

The Cheshire II search engine supports both Boolean and
probabilistic searching on any indexed element of the data-
base. In probabilistic searching, a natural language query
can be used to retrieve the documents that are estimated
to have the highest probability of being relevant given the
user’s query. The search engine supports a simple form
of relevance feedback, where any items found in an initial
search (Boolean or probabilistic) can be selected and used
as queries in a relevance feedback search.

The search engine also supports various methods for trans-
lating a searcher’s query into the terms used in indexing
the database. These methods include elimination of “noise”
words using stopword lists (which can be different for each
index and field of the data), particular field-specific query-
to-key conversion or “normalization” functions, standard
stemming algorithms (a modified version of the Porter stem-
mer[11]) and support for mapping database and query text
words to single forms based on the WordNet dictionary and

thesaurus using a adaption of the WordNet “Morphing” al-
gorithm and exception dictionary.

However, the primary functionality that distinguishes the
Cheshire II search engine is support for probabilistic search-
ing on any indexed element of the database. This means
that a natural language query can be used to retrieve the
documents or document components that have of highest
probability of being relevant given the user’s query. In both
cluster searching and direct probabilistic searching of the
database, the Cheshire II search engine supports a very sim-
ple form of relevance feedback, where any items found in an
initial search (Boolean or probabilistic) can be selected and
used as queries in a relevance feedback search.

The probabilistic retrieval algorithm used in the Cheshire IT
search engine is based on the logistic regression algorithms
developed by Berkeley researchers and shown to provide ex-
cellent full-text retrieval performance in the TREC evalua-
tion of full-text IR systems[3, 2, 1]. Formally, the probability
of relevance given a particular query and a particular record
in the database P(R | Q,D) is calculated and the docu-
ments or components are presented to the user ranked in
order of decreasing values of that probability. In the Chesh-
ire II system P(R | @, D) is calculated as the “log odds”
of relevance log O(R | @, D), where for any events A and B
the odds O(A | B) is a simple transformation of the prob-

ig;g;. The Logistic Regression model provides
estimates for a set of coefficients, ¢;, associated with a set of
S statistics, X;, derived from the query and database, such

that

abilities

S
logO(R| Q,D) = co » ;X (1)

i=1

where ¢ is the intercept term of the regression.

For the set of M terms (i.e., words, stems or phrases) that
occur in both a particular query and a given document or
document component, the equation used in estimating the
probability of relevance for the Cheshire II search engine
is essentially the same as that used in [2] where the coeffi-
cients were estimated using relevance judgements from the
TIPSTER test collection:

X, =4+ E]Nil logQAF;, . This is the log of the absolute
frequency of occurrence for term ¢; in the query aver-
aged over the M terms in common between the query
and the document or document component. The co-
efficient c¢i used in the current version of the Cheshire
II system is 1.269.

X2 =+/QL . This is square root of the query length (i.e.,
the number of terms in the query disregarding stop-
words). The ¢2 coefficient used is -0.310.

X3=1L Z]Nil logDAF,; . This is is the log of the absolute
frequency of occurrence for term t; in the document
(or component) averaged over the M common terms.
The c3 coefficient used is 0.679.

X4 =+/DL . This is square root of the document or com-
ponent length. In Cheshire II the raw size of the doc-
ument or component in bytes is used for the document
length. The ¢4 coefficient used is -0.0674.

X5 = 37 Y=, logIDF;; . This is is the log of the inverse
document frequency(IDF) for term ¢; in the document
averaged over the M common terms. IDF is calculated
as the total number of documents or components in the
database, divided by the number of documents or com-
ponents that contain term ¢; The c5 coefficient used is
0.223.

Xe =logM . This is the log of the number of terms that are
in both the query and in the document or component.
The cg coefficient used in Cheshire IT is 2.01.

These coefficients and elements of the ranking algorithm
have proven to be quite robust and useful across a broad
range of document and component types.

In recent work we have developed alterative forms of the
ranking algorithms discussed above for application in dis-
tributed search collection selection. Because the “collection
documents” used for our method of distributed search [6, 7]
represent collections of documents and not individual doc-
uments, a number of differences from the usual logistic re-
gression measures were used. In addition, analysis showed
that different forms of the TREC queries (short titles only,
longer queries including the concepts fields and the very long
title, concepts, description and narrative) behaved quite dif-
ferently in searching the distributed test collections, so three
different regression equations were derived and applied au-
tomatically based on the length of the query.

Probabilistic searching, as noted above, requires only a nat-
ural language statement of the searcher’s topic, and thus no
formal query language or Boolean logic is needed for such
searches. However, the Cheshire II search engine also sup-
ports complete Boolean operations on indexed elements in
the database, and supports searches that combine proba-
bilistic and Boolean elements. Although these are imple-
mented within a single process, they comprise two parallel
logical search engines. Each logical search engine produces a
set of retrieved documents. When a only one type of search
strategy is used then the result is either a probabilistically
ranked set or an unranked Boolean result set (these can also
be sorted). When both are used the parallel search strate-
gies merge the two result sets as a single set.

At present, combined probabilistic and Boolean search re-
sults are evaluated using the assumption that the Boolean
retrieved set has an estimated P(R | Qpool, D) = 1.0 for
each document in the set, and 0 for the rest of the collec-
tion. The final estimate for the probability of relevance used
for ranking the results of a search combining Boolean and
probabilistic strategies is simply:

P(R | Q:D) = P(R | Qbool:D)P(R| Qprob,D)

where P(R | Qprob, D) is the probability estimate from the
probabilistic portion of the search, and P(R | Quool, D) the

estimate from the Boolean. This has the effect of restricting
the results to those items that match the Boolean portion,
with ordering based on the probabilistic portion.

Besides allowing users greater flexibility, the motivation for
having two search methods follows from the observation that
no single retrieval algorithm has been consistently proven to
be better than any other algorithm for all types of searches.
By combining the retrieved sets from these two search strate-
gies, can leverage the strengths and reduce the limitations
of each type of retrieval system. In general, the more evi-
dence the system has about the relationship between a query
and a document (including the sort of structural information
about the documents found in the INEX queries), the more
accurate it will be in predicting the probability that the doc-
ument will satisfy the user’s need. Other researchers have
shown that additional information about the location and
proximity of Boolean search terms can be used to provide a
ranking score for a set of documents[4]. The inference net IR
model has shown that the exact match Boolean retrieval sta-
tus can be used as additional evidence of the probability of
relevance in the context of a larger network of probabilistic
evidence[12]. In the same way, we treat the set of documents
resulting from the exact match Boolean query as a special
case of a probabilistically ranked set, with each retrieved
document having an equal rank. The Boolean result set is
combined with the ranked result set from the probabilistic
query to form a single ranked result set using evidence from
both logical retrieval engines to determine a more accurate
probability of relevance.

In addition we have implemented a “Fusion Search” facility
in the Cheshire II system that can be used to merge the
result sets from multiple searches. These will typically be
from different indexes and different elements of the collec-
tion which are then merged into a single integrated result
set. This facility was developed originally to support combi-
nation of results from distributed searches, but has proved
to be quite valuable when applied to the differing elements
of a single collection as well. We have exploited this facility
in our retrieval processing for INEX (as discussed below).
‘When the same documents, or document components, have
been retrieved in differing searches, their final ranking value
is based on combining the weights from each of the source
sets. It should be noted, however that this final ranking
value is not a probability but a combination of probabilistic
weights and weighted Boolean values.

Relevance feedback has been implemented quite simply in
the Cheshire II system, as probabilistic retrieval based on
extraction of content-bearing elements (such as titles, sub-
ject headings, etc.) from items that have been seen and
selected by a user. Because the INEX runs were done as
a batch process, no relevance feedback was performed for
them.

The following section describes the approach taken using the
Cheshire IT system to construct the INEX database and con-
duct to searches based on the INEX structured and content
queries.

3. INEX APPROACH

Our approach in the INEX evaluation was to use all of
the features of the cheshire system required to support the
searches produced by the participant in the evaluation. This
section will describe the indexing process and the search pro-
cessing along with specific comments on particular searches
and the special approaches taken in some cases. In this
discussion we will described some additional features of the
Cheshire II system that were applied in processing the INEX
queries.

3.1 Indexing the INEX Database

All indexing in the Cheshire II system is controlled by an
SGML Configuration file which describes the database to
be created. This configuration file is subsequently used in
search processing to control the mapping of search command
index names (or Z39.50 numeric attributes representing par-
ticular types of bibliographic data) to the physical index files
used and also to associated component indexes with partic-
ular components and documents.

As noted above, any element or attribute may be indexed.
In addition particular values for attributes of elements can
be used to control selection of the elements to be added
to the index. The configuration file entry for each index
definition includes three attributes governing how the child
text nodes of the (one or more) element paths specified for
the index will be treated. These attributes are:

1. ACCESS: The index data structure used (all of the
indexes for INEX used B-TREE indexes).

2. EXTRACT: The type of extraction of the data to
be performed, the most common are KEYWORD, or
EXACTKEY. EXACTKEY takes the text nodes as
a string with order maintained for left-to-right key
matching. KEYWORD takes individual tokens from
the text node. There is also support for extraction
of proximity information as well (true proximity in-
dexes where not used for the INEX evaluation). Some
more specialized extraction methods include DATE
and DATETIME extraction, INTEGER, FLOAT and
DECIMAL extraction, as well as extraction methods
for geographic coordinates.

3. NORMAL: The type of normalization applied to the
data extracted from the text nodes. The most com-
monly used are STEM and NONE. STEM uses an en-
hanced version of the Porter stemmer, and NONE (in
spite of the name) performs case-folding. Specialized
normalization routines for different date, datetime and
geographic coordinate formats can also be specified.

Each index can have its own specialized stopword list, so
that, for example, corporate names would have a different
set of stopwords from document titles or personal names.

Most of the indexes used in the INEX evaluation used KEY-
WORD extraction and STEMming of the keyword tokens.
Exceptions to this general rule were date elements (which
were extracted using DATE extraction of the year only) and

[Name | Description | Contents |
docno Digital Object ID //doi
pauthor Author Names //fm/au/snm

//fm/au/fnm
title Article Title //fm/tig/atl
topic Content Words / /fm/tig/atl

//abs

//bdy

//bibl/bb/atl

//app
date Date of Publication //hdr2/yr
journal Journal Title //hdrl/ti
kwd Article Keywords / /kwd
abstract Article Abstract //abs
author_seq Author Seq. //fm/au

@sequence
bib_author_fnm | Bib Author Forename | //bb/au/fnm
bib_author_snm | Bib Author Surname | //bb/au/snm
fig Figure Contents //fig
ack Acknowledgements / /ack
alltitles All Title Elements //atl, //st
affil Author Affiliations //fm/aff
fno IEEE Article ID //fno

Table 1: Cheshire Article-Level Indexes for INEX

the names of authors which were extracted without stem-
ming or stoplists to retain the full name.

Table 1 lists the document-level (//article) indexes created
for the INEX Evaluation and the document elements from
which the contents of those indexes were extracted. Natu-
rally the indexes created for the INEX collection were tai-
lored to the needs of the retrieval task. Because it is sim-
ple to add a new index in the Cheshire system without re-
indexing the entire collection, indexes were added incremen-
tally to support all of the specified content elements from
the 60 INEX topics (i.e., the <ce> tags from the topic doc-
uments). Many of the indexes were document-level indexes,
but, given the combination of target elements and content
elements specified in some of the topics, a set of defined
components and indexes to those components were created
also.

| Name | Description | Contents

COMP_SECTION | Sections //sec

COMP_BIB Bib Entries | //bm/bib/bibl/bb

COMP_PARAS Paragraphs | //ilrj|//ipl|//ip2|
//ip3|//ip4|/ /ip5|
//item-none|//p|//p1|
//p2|//p3|//tmath]|
//tf

COMP_FIG Figures //fig

Table 2: Cheshire Components for INEX

As noted above the Cheshire system permits parts of the
document subtree to be treated as separated documents
with their own separate indexes. Tables 2 & 3 describe the
XML components created for the INEX Evaluation and the

component-level indexes that were created for them.

Table 2 shows the components and the path used to de-
fine them. The COMP_SECTION component consists of
each identified section (<sec> ... </sec>) in all of the doc-
uments, permitting each individual section of a article to
be retrieved separately. Similarly, each of the COMP_BIB,
COMP_PARAS, and COMP_FIG components, respectively,
treat each bibliographic reference (<bb> ... </bb>), para-
graph (with all of the alternative paragraph elements shown
in Table 2), and figure (<fig> ... </fig>) as individual
documents that can be retrieved separately from the entire
document.

Component

or Name Description Contents
COMP_SECTION

sec_title Section Title / [sec/st
sec_words Section Words /[sec
COMP_BIB

bib_author Bib. Author //au
bib_title Bib. Title /Jatl
bib_date Bib. Date //pdt/yr
COMP_PARAS

para_words Paragraph Words | *t
COMP_FIG

fig_caption Figure Caption //fgc

Table 3: Cheshire Component Indexes for INEX

fIncludes all subelements of paragraph elements.

Table 3 describes the XML component indexes created for
the components described in Table 2. These indexes make
individual sections (COMP_SECTION) of the INEX doc-
uments retrievable by their titles, or by any terms occur-
ring in the section. Bibliographic references in the articles
(COMP_BIB) are made accessible by the author names, ti-
tles, and publication date of the individual bibliographic en-
try. Individual paragraphs (COMP_PARAS) are searchable
by any of the terms in the paragraph, and individual figures
(COMP_FIG) are indexed by their captions.

All of these indexes and components were used during Berke-
ley’s search evaluation runs of the 60 INEX topics. The runs
and scripts used in the INEX evaluation are described in the
next section.

3.2 ThelNEX Search Approach

Berkeley submitted three retrieval runs for the INEX Evalu-
ation. This section will describe the general approach taken
in creating the queries submitted against the INEX database
and the scripts used to do the submission. Then the differ-
ences between the three runs will be examined, including
the handling of some special cases where the default query
processing provided by the scripts did not appear to provide
effective results.

3.2.1 General Script structure and contents
As noted in the overview of Cheshire II features, all of the
Cheshire client programs are scriptable using Tcl or Python.

For the INEX test runs we created scripts in the Tcl lan-
guage that, in general, implemented the following sequence
of operations:

1. Read and parse topics
2. Extract search elements and generate queries

(a) Extract topic-id, query type , title (identifying
content words (<cw>), content elements (<ce>),
and target elements (<te>)), description, narra-
tive, and keywords, concatenating multi-line ele-
ments and store for each topic.

(b) Duplicate British spellings in queries to include
both British and U.S. spelling (e.g. “colour” be-
comes “colour color”).

(c) Based on the query type (CO or CAS):

i. For CO-type queries, construct 7 queries (runl
and run3) or 5 queries (run2) that include:
A. Boolean search of topic index for all terms

from query title and keywords (runl and
run3).

B. Probabilistic search of topic index for all
terms from query title and keywords (runl
and run3).

C. Probabilistic search of kwd index for all
terms from query title and keywords (all
runs).

D. Probabilistic search of abstract index for
all terms from query title and keywords
(all runs).

E. Probabilistic search of title index for all
terms from query title and keywords (all
runs).

F. Probabilistic search of alltitles index for
all terms from query title and keywords
(all runs).

G. Boolean search of alltitles index for all
terms from query title (all runs).

ii. For CAS-type queries, construct all of the CO
queries as in A-G above, but only for the key-
words, then...

A. For each content element (<ce>) speci-
fied in the title of query construct both a
probabilistic query and a boolean query
of the index matching that content ele-
ment, using the content words (<cw>)
specified in the topic title for that con-
tent element.

iii. Construct extra or alternate queries for spe-
cial cases (see below).

3. Submit queries and capture resultsets

(a) Each query constructed in the previous step is
submitted to the system, and the resultsets with
one or more matching documents are stored.

(b) All stored resultsets are combined using the re-
sultset SORT/MERGE facility (discussed above),
resulting in a single ranked list of the top-ranked
100 documents.

(c) The requested document elements (<te>) are ex-
tracted from the top-ranked documents.

4. Convert resultsets to INEX result format. (E.g., ex-
tract matching element XPath’s, ranks, and document
file ids from top-ranked results and output the INEX
XML result format for each)

3.2.2 ““Fusion Search” and INEX Retrieval

As noted above, our INEX runs used the Cheshire “Fusion
Search” facility in merging the result sets from multiple indi-
vidual searches of different indexes. In the case of Berkeley’s
INEX runs, this typically involved between 7 and 14 sepa-
rate queries of the system that were then combined using
the fusion search facility to determine the final ranking of
the documents or components.

The primary reason for this approach was largely to take
advantage of more precise search matches (e.g. Boolean ti-
tle searches) when they are possible for a given query, yet
to permit the enhanced recall that probabilistic queries pro-
vide. As described in the earlier section on Cheshire search,
when the same documents, or document components, have
been retrieved in differing searches, their final ranking value
is based on combining the weights from each of the source
resultsets. Therefore, a document that matches multiple
searches will typically end up with a higher final rank than
a document that matches fewer of the individual searches.

Thus, the goal in the search approach used in all of Berke-
ley’s entries for INEX has been to try to achieve a good level
of precision, without sacrificing too much recall.

3.2.3 Special Case handling

In reviewing the INEX topics, it was obvious that some of
them would require special handling, because of unusual re-
sult requirements (e.g. topic #14 specifies that figures are
to be retrieval along with paragraphs describing the figure).
Others required special handling because of Boolean con-
straints on the requested results, unfortunately with incon-
sistent syntax for specifying those constraints (e.g. Topic
#9 specifies that calendars are NOT to be retrieved by us-
ing “<cw> -calendar </cw> <ce> tig/atl </ce>” while
Topic #17 uses “<cw>not(W. Bruce Croft) </cw> <ce>
fm/au </ce>” for the same type of constraint.

In these situations special handling of the queries to ap-
ply the appropriate constraints was carried out by the run
scripts for the Berkeley runs. The topics that were handled
in this way were numbers 02, 04, 07, 09, 12, 16, 17, 20, 26,
27 and 30. All other queries were handled without special
processing.

4. CONCLUSION

The results of the full INEX evaluation have not yet been
revealed, but from “eyeballing” the results of the Cheshire
runs for individual topics, and from the experience of evalu-
ating the pooled results from all of the participating systems
for two of the topics, it appears that the approach taken in
the Berkeley runs was fairly effective. Although precision of
results is usually a poor guide to overall performance, it ap-
pears that in many cases (from an admittedly biased view
of the results) that the results using our “Fusion Search”

approach have been quite good for many of the queries in
the INEX test collection. We await the official analysis of
the results to see if this belief is justified.

5. ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation and Joint Information Systems Committee(U.K)
under NSF International Digital Libraries Program award
#I1S-9975164.

6. REFERENCES
[1] W. S. Cooper, A. Chen, and F. C. Gey. Experiments in the
probabilistic retrieval of full text documents. In D. K.
Harman, editor, Overview of the Third Text Retrieval
Conference (TREC-3): (NIST Special Publication
500-225), Gaithersburg, MD, 1994. National Institute of
Standards and Technology.

[2] W. S. Cooper, F. C. Gey, and A. Chen. Full text retrieval
based on a probabilistic equation with coefficients fitted by
logistic regression. In D. K. Harman, editor, The Second
Tezt Retrieval Conference (TREC-2) (NIST Special
Publication 500-215), pages 57-66, Gaithersburg, MD,
1994. National Institute of Standards and Technology.

[3] W. S. Cooper, F. C. Gey, and D. P. Dabney. Probabilistic
retrieval based on staged logistic regression. In 15th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval, Copenhagen,
Denmark, June 21-24, pages 198-210, New York, 1992.
ACM.

[4] M. A. Hearst. Improving full-text precision on short queries
using simple constraints. In Proceedings of SDAIR ’96, Las
Vegas, NV, April 1996, pages 59-68, Las Vegas, 1996.
University of Nevada, Las Vegas.

[5] R. R. Larson. Classification clustering, probabilistic
information retrieval, and the online catalog. Library
Quarterly, 61(2):133-173, 1991.

[6] R. R. Larson. Distributed resource discovery: Using Z39.50
to build cross-domain information servers. In JCDL 01,
pages 52-53. ACM, 2001.

[7] R. R. Larson. A logistic regression approach to distributed
ir. In SIGIR 2002: Proceedings of the 25th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval, August 11-15,
2002, Tampere, Finland, pages 399-400. ACM, 2002.

[8] R. R. Larson and J. McDonough. Cheshire II at TREC 6:
Interactive probabilistic retrieval. In D. Harman and
E. Voorhees, editors, TREC 6 Proceedings (Notebook),
pages 405-415, Gaithersburg, MD, 1997. National Institute
of Standards and Technology.

[9] R. R. Larson, J. McDonough, P. O’Leary, L. Kuntz, and
R. Moon. Cheshire II: Designing a next-generation online
catalog. Journal of the American Society for Information
Science, 47(7):555-567, July 1996.

[10] J. K. Ousterhout. T'cl and the Tk Toolkit. Addison-Wesley,
Reading, Mass., 1994.

[11] M. Porter and V. Galpin. Relevance feedback in a public
access catalogue for a research library: Muscat at the scott
polar research institute. Program, 22:1-20, 1988.

[12] H. Turtle and W. B. Croft. Inference networks for
document retrieval. In J.-L. Vidick, editor, Proceedings of
the 13th International Conference on Research and
Development in Information Retrieval, pages 1-24, New
York, 1990. Association for Computing Machinery, ACM.

[13] A. Z39.50-1995. Information Retrieval (239.50):
Application Service Definition and Protocol Specification
(ANSI/NISO Z39.50-1995). NISO, Bethesda, MD, 1995.

